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Radiative losses due to pulse interactions in birefringent nonlinear optical fibers
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The transient evolution of two-polarization pulses in a birefringent nonlinear optical fiber, governed by
coupled nonlinear Schdinger (NLS) equations, is considered. The evolution is studied using a trial function
consisting of coupled solitonlike pulses with varying parameters augmented by a radiative shelf in the La-
grangian formulation of the coupled equations, which yields ordinary differential equations for the pulse
parameters. It is shown that including mass and momentum fluxes due to the radiative shelf is a requirement
to obtain good agreement with full numerical solutions of the governing equations.
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[. INTRODUCTION The behavior of vector solitary wave solutions of the
above equations has been investigated by a number of re-
The use of solitons as the information bit in optical com-searchers, showing that only single-peaked, symmetric vec-
munication systems was proposed by Hasegawa and Tappd@f solitary waves are stableee, e.g.[3,5,4,6). The evolu-
[1]. Solitons have a number of significant advantages as inion of such solitonlike pulses has been explored using
formation carriers, the most important being the balancing of'umerical and variational techniquis-9). In particular, the
the inherent Kerr nonlinearity of the optical glass with linearchirped Lagrangian method of Andersid®] works remark-

chromatic dispersion, so that propagation occurs withou@PlY Well to describe the dynamics of these coupled pulses,

change of form. Real optical fibers are birefringent, so thafit 1€ast for relatively short distancesl]. One of the main

different polarizations travel with different velocities, which disadvantages of the variational method, however, is that dis-
in the linear limit leads to signal splitting. Opposing this, persive radiation is not easily included. As the pulses propa-

however, the nonlinearity of the glass leads to cross-pha ate_and collide, oscillations i_n their relative po_sition_s or
! . o mplitudes cause them to continually radiate. This radiation
modulation W.h'Ch tends to hold the po_lar|z_at|ons t_ogetheris particularly important when propagation over longer dis-
The propagation of a pulse through a birefringent fiber then, a5 must be considered.
depends on the Irelative importan_ce of.these twp effects. Kath and Smyth[12] developed an alternative hybrid
The propagation of optical solitons in a nonlinear, polar-yariational method to calculate the effect of dispersive radia-

ization maintaining birefringent optical fiber is described bytjon on the evolution of pulse initial conditions for the NLS

the coupled nonlinear Schiimger (CNLS) equationg2] equation. The method provided a much improved approxi-
mation of the pulse evolution. In an independent study, Yang

Jau 1 éd%u [9] linearized about a coupled vector soliton to calculate the

ia_z+ > F+(|U|2+A|U|Z)U=0, (18  radiation shed as a near-vector soliton initial condition

evolves and showed the steady state of a vector soliton is
reached by the loss of mass and energy via the shed disper-
Jv 1% sive radiation. Smyth and WortHyt 3] extended the method
I—*5 F+(|U|2+A|U|2)U=0- (1b)  of [12] to model a nonlinear twin-core fiber, which is gov-
erned by a system of two coupled NLS equations similar to
the CNLS equationgl). It was found that including the dis-
Hereu andv are the complex amplitudes of the two orthogo- persive radiation shed as the pulses evolve gives approxi-
nally polarized modes propagating in the fiber ais the  mate solutions in much better agreement with full numerical
cross-phase modulaticl€PM) coefficient, where &A<1.  solutions than those of previous work based on the chirp
The variablez is the distance down the fiber normalized by method of Andersori10], which did not include this shed
the dispersion length artds the reduced time. The coupled radiation.
NLS equationg1) have an exact inverse scattering solution Here we report on the extension and application of the
for A=0, for which the system reduces to a pair of un-hybrid method of{12] to the CNLS equations. As demon-
coupled NLS equations, and fér=1, for which the system strated by Yand9], it will be shown that inclusion of the
is the Manakov equation. Therefore fa=0 andA=1 the  mass and momentum fluxes associated with the dispersive
solution of Eq. (1) is integrable and, in principle, fully radiation shed as the pulses evolve is necessary in order to
known. For real fibers, howeveA=2/3 and approximate or achieve good agreement with full numerical solutions of the
numerical methods must be used to describe pulse evolutiosoupled NLS equations.
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Il. APPROXIMATE EQUATIONS L=—(01=VoyD(2miwy+/197) — mpWagi + gy )
The Lagrangian for the CNLS systeft) is 1 7]2 2
L L L + T 7191y — 3w, _/1V191 Vintw, + 3 W,
L==i(u*u,—uu¥)— = |u?+ = |ul*+Alu|?|v|? ) , , )
2 ‘ 227 2 +ARI 5l 1= (05— VayH) (2 75Wa+ /503) — T1aW,0)
1 1 1 2
i B P I~ Sl A 72
+2|(U*UZ Uvz) 2|Ut| +2|U| . (2) +7TW2927]2+7T77292W2_§V\72_—/2V292 27]§W2
Here the asterisk denotes the complex conjugate and n E 4 (5)
u, v, U*, andv* are taken to be separate variables when 3 722

variations are taken. The key to the hybrid variational _ o

method is the choice of trial functions to substitute into thewhere the integral, is given by

Lagrangian(2). In particular, it is critical that the effect of ) .

the dispersive radiation shed as the pulses evolve is |ncludeq sech 6, sech 6,dt, 6,= y1’ 0,= Y2

in the trial functions. Based upon work done for the NLS - ' Wy w,
equation[12], the appropriate trial functions are (6)

t—y, o In deriving this approximate Lagrangian, it has been as-
u= 7, sech——e'71*Valt=y1) 4 jg @loa+iVa(t=y1), sumed that the amplitude of the dispersive radiation is much
Wi (3 less than the pulse amplitudes, so that|< 7, and|g,)

< 7,. Of the quadratic terms ig,; andg, in the averaged

Lagrangian, only those proportional 14 and/’, have been
V=1, secht_—zei 02+ Va(t=y2) 1 gl 72+ 1Valt=y2), retained. These terms are needfad for mass conservatio_n to be

Wp correct, while the others have little effect on the variational
(3b)  equations.
Taking variations of the averaged Lagrangids with

Here the parameterg;, w;, Vi, y;, o, andg;, i=1,2, respect to each of the pulse parameters then gives the varia-
are functions ofz. The first term in each expression is a tional equations
varying solitonlike pulse, and the second term includes the

effect of the dispersive radiation which lies in the vicinity of d /101 L1 ,

the pulse[12]. This radiation term is assumed to take the 9911 g (mwi)= (‘71_ §V1y1>v (78
form of a flat shelf(sinceg; andg, have not dependence

because both numerical solutions of the NLS equation and 2 7
perturbed inverse scattering show that the radiation in the Sn1i —A(o1— VY1) ;W1 —27TW Qg1 — 5 ——

vicinity of the evolving pulse has littlevariation. The physi- 3wy

cal reason for this is that the high-frequency radiation has the
largest group velocity and so rapidly propagates away from
the pulse, leaving low-frequency radiation only in its neigh- (7b)
borhood. The trial function§3) include the radiation in the
vicinity of the pulse only, and the form of the dispersive 1 7,1
radiation propagating away from the evolving pulses will be oWy —2(oy—Viyy) ni—2mm0p+ 32
considered later. It is this radiation propagating away from 3w
the evolving pulses which causes them to evolve toward . n5
steady states. The shelf under the pulsesdv cannot be —-Vini+ 37T 2A——"15=0, (70)
infinite, of course, since this would imply that they contain W1
infinite mass. It is therefore assumed that the sheliufar)
is of length/; (/,) centered about the pulse position . %_

8Vq: = (7d)
=y1 (Ya). dz

Evolution equations for the pulse parameters in 8.

—2V? w+§ Swy+2A7,731,=0
171W1 3711W1 n17m311=0,

are then obtained by substitutiltg) into the Lagrangiari2) . d ) .
integrated ovet from t=— to t=oo, 607y d—z(27}1W1+/191)=0, (7e)
c= | vat (4) d o 2 2Anin;
o % d_z[(27Z1W1+/191)V1]:_ I3, (7f)

(except for the terms describing the shelf, which only pro-plus  similar equations due to variations in
duce finite intervals The result is 02, M2, Wy, V5, Y5, andos,. Also,
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I2=j (t—y,)sech 6, seck 6, tanhg, dt (8)

and

Ing sech 0, secf 6, tanhé, dt. 9)
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dE d[2 7} 2 o 2wz 4 4
FET §W—l+(27]1W1+/191)V1_§771W1+

2
3w,
2 o2 4. 2 2
+(275Wo+ 7 5095) V5 — §772W2_2A771772|1
-0. (13)

This energy conservation result can be obtained directly by

After some manipulation, the first four of the variational taking a combination of the variational equatiofi§. It

equationg7) become

d 1010 , 1, U5
d_Z(le)_T 7T 5Ws +AW_%(W1|1_|2) ;
(1039
do__2 2—w‘z)—Amng(m ~21,)
dz 37T771771 1 77% 1l1 2)
(10b)
doy 1 dyl_ 2 5 77%
a9z 2Vigy T oW +Ava(Wlll_|2)’
(109
dy;
<= =V1. (100

The last two variational equation&fe) and (7f), are state-
ments of the conservation of mass and momentumufor
From the NLS equatioril) one can show directly that the
equations for conservation of mass and momentum are

(11a

RO -

-(9 * * 14 * * 2 4
|£(u ut—uut)+zﬁ(u U+ UL — 2] U+ 2|u]®)

=—2A|ul?(v*vi+ool). (11b

Integrating Eq(11a fromt= —c0 tot=x gives Eq.7¢e) and
integrating Eq(11b) gives Eq.(7f).

In addition, the coupled NLS systeffil) has the total-
energy conservation equation

3
== (U= [ul*+ oo = [v] = 2A]u]?o[?)

J

+ 5 = [uf ug—ugu — 2[ul*(u* ug—udy) +of oy
29z

—vwi—2|v|2(v*vi—vvf)—2A|ul(v* v—vo)

—2AJv|?(u*u;—uuf)]=0. (12)

Integrating this front=—o to t=0o0 gives

should also be noted that the mass conservation equaispn
can be obtained from a suitable combination of the energy
conservation and other variational equations and is not inde-
pendent.

The final system governing the evolution of the pulse pa-
rameters can therefore be taken to be the variational equa-
tions (10), the momentum conservation equatidrib), and
the energy conservation equatiB), plus the similar varia-
tional and integrated momentum and energy conservation
equations for the parameters of the polarization. This
makes a total of 12 equations for the 12 parameters.

For simplicity we will now restrict the discussion to the
antisymmetric case for whichn,=7,, w;=w,, 0;
=0y, 01=03, V;=—V,, andy;=—y,. With these as-
sumptions, the integralg can be evaluated exactly and can
easily be found to be

| [¢cothi—1] (143
= C -
Y sintt ¢ ceothe—1l.
W ¢ws
I2_sinhzg[gcomg 1 sink? ¢
X[3 coth{+ ¢ —3¢ cothf{], (14Db)
2w,
l3=— [3¢ coth? £ —3 cothl — ¢], (140
sint? ¢
where
2y,
§=W—l- (15

With this antisymmetry, the system of equations governing
the evolution of the pulse then reduces to the six equations
(10), (11b), and(13) for »4, wy, o1, Vi, Y1, andg;.

Let us denote the fixed points of this system by
=7, w;=w, V;=V, andy,;=y. There are then two types
of fixed points: that corresponding to a bound soliton, for
which zw=1/\/1+A with y=V=0, and that corresponding
to separated solitons in andv, for which zw=1 with y,

—o0 ast—oo, This second type of fixed point is just a NLS
soliton in each polarization.

These two fixed points indicate the two main types of
behavior seen in this system. Consider the case where over-
lapped pulses start at the satrgosition in both theu andv
polarizations. If the initial velocity difference is sufficiently
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large, the pulses separate and become unbouzé-as. If, Ju 162
however, the initial velocity is small enough, then the pulses ia— + > — =0, (199
remain bound and repeatedly oscillate about each other, z ot
shedding mass, momentum, and energyg-asc.

From the energy conservation equatitiB), the fixed v 15

int f b d li ; ; b i—+ - —=0. (19b)
point for a bound soliton Is given by 9z 2 g2

3 These equations are basically the same as those governing
=" 1+A (16 the shed radiation for the NLS equatifi?], but care must
be taken because here the radiation is shed by accelerating
whereE, is the initial value of the total energy. Similarly, pulses. Th'SH.O:] %ourse,l_was n<|)t a relevan_t issue for the NLS
the fixed point for separated, single polarization solitons islquat'on' which has soliton solutions moving at constant ve-
given by the solution of ocity. To determine the effect of_ the ficceleratlon, we shift

(199 to a frame of reference moving with the pulse using the

transformations

- ~on 3
773—3V27;+ZE0=0. (17 ,
gzt_f V(7)dr, u:U(gyz)eiv&(1/2)ifgv2(7)d7,
0

Unfortunately,V as z—o cannot be determined from the (20)
initial conditions via the conservation equations and must be

determined from the full time-dependent solution of the ap-so that

proximate equations. E,<0, then the coupled steady state

is stable and the pulses evolve toward the amplitude given by U 145°U

Eq. (16). If Eo>0, then the separated solitons form the 'EJFE(?_{;:Z:szU- (21)
stable steady state and the pulses evolve toward the ampli-

tude given by Eq(17). In - L . . .
P general, this linear partial-differential equation for the dis-
The length of the shelf under the solitons,=/; forthe o rsjye radiation cannot be solved exactly. However, f it is
antisymmetric case considered here determined by the assumed thdV,| is small, then to first orde21) is the same

requirement that the frequency of oscillat.ion n Qf the equation for the dispersive radiation as for the NLS equation
approximate equations approaches the soliton oscillation fre[-lz].

quency as the steady state is approacfie]. From this We first consider the radiation shed to the right of the
requirement we obtain, on linearizing the approximate equasise. Keeping only the quadratic terms in the mass conser-

tions, vation equation(11a for the coupled NLS equationél)
gives the mass conservation equation for the first of the lin-
y 37?2 earized NLS equationd 99. Using the transformation20),
172 ' it can then be shown that the mass of the radiation shed to
8ny1+A . o
g the right of the pulse is given by
3 (18 d F lu2dt=Im U* U] (22
(1=~ - u =im — .
"8y dzly. s o tle=re

for the cases of a coupled soliton and separated solitonSimilarly, the mass radiated to the left of the pulse in the

respectively. The approximate equatiofi0), (11b), and  Polarization is found to be

(13) are not as yet complete, however, as the effect of the d fy-ra

dispersive radiation propagating away from the evolving _j |u|2dt=—ImU*U§|§:,/ . (23)

pulses has not been determined. dz)_. 1

Adding together these two expressions to obtain the total

mass loss by the radiating pulse and noting that it has been
The effect of the radiation shed by the evolving pulsesassumed that the shelf is flat in the neighborhood of the

will now be determined in a similar manner to that used forpulse, so thatU(/1/2,z)|=|U(—/1/2,z)|, we have

the NLS equationi12]. It has been showfi2] that account-

ing for the mass and momentum loss due to radiation is i * 2dt=ImU*U ImU*U

sufficient to obtain a good approximation to the pulse behav- dz 7w|u| —im ele=ryreIm de=—ry2-

ior, and that energy loss can be neglected. (24)
Since the shed radiation has small amplitude, it is gov-

erned by the linearized form of the coupled NLS equationd/ith |V,| small, the Laplace transform solution of E@1)

D), for V,=0 [12] gives

Ill. RADIATION LOSS
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U2z =—ae o [0 oy S e (32b)
=2 g | T CErdzoVazn

so that the mass shed from the pulse to the dispersive radiéor the steady state of a coupled soliton or separated solitons,
tion is given by respectively. The momentum |0$88) is added to the mo-
mentum equatiorfl1b), so that it becomes

dJm| Pdr—2r L [0y 26 d
- u|“dt=2r— | ———=dr.
dz) - dzJom(z=7) d_z[(zniwl—"/lgi)vl]
Here r is the height of the shelff=|U(/1/2,2)|=]u(y 2A2 7R d (2 r(n)
+/1127)]. =- : 2I3—2Vr—f ——dr.

In a similar manner, it can be shown that the total mo- Wo dz o\w(z—17)
mentum in the dispersive radiation shed by the pulse inuthe (33

polarization is

The full system of approximate equations governing the evo-
'difc (u* ut—uu;*)dtz[Re(U*U&)—|U§|2 Iu_tion o_f the p_ulses_including mass and momentum loss to
Z) - dispersive radiation is then Eq4.0) with the equation fog;
e=/i2 replaced by Eq(31), Eq.(33), and Eq.(13).
—2VImU* U]l e In previous work[12], the integral in the mass loss term
(26) was approximated using

(27)
2
With |V,| small, it can then be found on using Eg5) that i ) _ !
: ) ST dr : (34)

the momentum lost to the dispersive radiatiorifig] dz)o \[m(z—7) r(0)\mz

d fw (o . d(z r(7) g wherer(0) is the value of atz=0. This approximation is

[ utui—uug )dt=—4Vr— | ———dr. i initial val blem in which the pulse

dz)_. t i azle appropriate for an initial value pro ]

0Vm(z=7) 29) sheds a large amount of mass initially and then decays onto

the steady state. In the present work, however, the pulses can
Comparing the mass 10486) with this momentum loss, it oscillate about each other, with mass shed each time they
can be seen that the momentum loss is the result of the maB&ss through each other. To obtain accurate values of the
shed at velocityV into dispersive radiation. This is just an Mass integral in Eq(26) in such oscillatory cases, the inte-
expression of the Galilean invariance of the mass and mgdral was evaluated numerically using the method of Miksis
mentum conservation laws of the NLS equation. and Ting[14]. As the integral is singular a= 7, near this

As for the NLS equatiofil2], mass conservation can then Singular point the nonsingular partof the integrand was

be used to show that the height of the shelf is given by approximated by a trapezoidal approximation and the singu-
lar part 1A/7w(z— 7) was evaluated exactly. Away from the

3pV1+A 7 ‘ singular point, the integral was evaluated using the trapezoi-
2=T 295w, — 22—+ /107 (29 dal rule.
VI+A The other complication occurs for the separated soliton

for the case when coupled solitons are the steady state an{*€d Point because the steady velocityis not determined
by the conservation equations. This means that the fixed

, 37, -, point ;7 cannot be Qetermined from EqL7), so that the

=g [2mw,—27+ /101] (800 radiation damping given by Eq32b) cannot be evaluated.
To overcome this, the steady velockywas found using a

for the case when separated solitons are the steady state. T$feooting method. For the initial iteration, the instantaneous

mass losg26) is now added to the equation fgr in Eq.  value ofV, at each space step was used to estidaaed the

(10) [12], so that this equation becomes fixed point 7 was then estimated at each space step by
dgl 2 2 —2 71 77% ~ 2 3 13
E__Enl(nl_wl )_Awwi (Wil1—=213)—2ag,, n= 3V1771_ZE0 ) (35

(3D

which is a single Picard iteration on E¢L7). When the
where solution had settled to a steady state, the steady valvg of

R was used as a hew approximation f6rand a new approxi-
_ 3V1+A d(z r(7)

mation to7 was then found by solving E¢17). This process
a_ - . - -
8r dzJo \m(z—7) was repeated until the iterates fdrconverged. This shoot-

dr, (32a
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ing method to determin& worked quite well unless the

initial conditions were such that little radiation was produced
(for instance, whenp, was small. In such cases, the initial

iterates could have(0)<0 (and small, which is unphysical 0.2}
and the iteration would not converge. In this case, the sim-
plest fix was to ignore the mass loss, since the shed radiatior ©2f
was very small, in which case the iterations converged rap-sv_04 ]
idly. '

05}

IV. RESULTS 0.8

In this section solutions of the approximate equations de- 07
rived in Secs. Il and Il will be compared with full numerical . _ .
solutions of the coupled NLS equatiofiy. The numerical 085 02 04 06 o 08 1 12 14
method used to solve the coupled NLS equations was a pseu- 0
dospectral method based on that of Fornberg and Whitham giG. 1. Comparison between the velocidy as given by the
[15] for the Korteweg—de Vries equation. Thelerivatives  full numerical solution(—), the present approximation— — -,
in the coupled NLS equationid) were evaluated using fast and the chirped variational approximation - -). The initial values
Fourier transforms(FFT’s) and then the equations were are ;= 7q, w;=1/7,, V;=1.0, andy;=0 with A=2/3.
propagated forward in spacusing a fourth-order Runge-

Kutta scheme in Fourier space. The approximate evolution
equations were numerically integrated using a fourth-order

Runge-Kutta scheme. _ _ et al. [11] used various approximate methods to determine
As a first test we compared the numerical solution of thesy and compared these approximate values with full numeri-
full and approximate equations for the case of separatingy| solutions of the coupled NLS equatiofis. They found
pulses. For this test, we used the initial conditions  that the best comparison was obtained using the chirped
=70, Wi=1/779, V1=1.0, y;=0.0 (with g;=0.0 so that  yariational method7]. We note that this chirp method in-
no radiation is present initially with A=2/3, which corre-  ¢jydes an approximation to the radiation moving with the
sponds to antisymmetric polarizations started with a relativ%vowing pulses, but does not include the radiation shed by
velocity difference of 2. For this initial condition angly  the pulses.
sufficiently small, the solution evolves to a pair of separated \while the chirped variational methofi7] gives good
solitons with 7;=1Av; as z—%. Due to the cross-phase agreement for the velocities of the pulses, it does not give
modulation, the velocity/; changesslows by an amount  good agreement for the other pulse parameters. Figure 2
6V. Since the steady velocity cannot be determined from shows the space evolution of the amplitude of the pulfa
the conservation equations, the shooting method outlined ithe initial conditionsz,=1.15, w,;=1/%,, V;=1, andy;
Sec. lll was used to determine the steady state. Also, since 0 with A=2/3. Although the values ofV obtained by the
the pulses’ positions do not oscillate about each other in thiswo approximate methods for this initial condition are very
case, the approximatiof84) was used to evaluate the inte- close, it can be seen that the present approximate equations
gral in Eq.(26). Using this approximation together with the give markedly improved accuracy for the magnitude of the
shooting method to determine the fixed point, however, givepulse amplitude oscillation. The chirped variational equa-
r(0)=0 for the initial iterate of the shooting method. To tions predict an amplitude oscillation with constant ampli-
overcome this initial singularity, the mass loss given by thetude. This, of course, is due to the chirped method not taking
integral (34) in Egs.(31) and(33) was ignored for the first any account of the radiation shed by the evolving pulses.
iteration of the shooting method. However, for all subse- The reason why the approximate equations break down as
quent iterationsy (0)#0 and so the mass loss terms werethe cutoff inV, is approached is apparent if the numerical
included for all subsequent iterations. solution is examined for values of, near the cutoff. From
Figure 1 shows a comparison betwe®has a function of  Fig. 3 it can be seen that for sufficiently largg the input
the initial amplitudes, as given by the full numerical solu- pulse splits and a shadow pul&&e smaller one in the fig-
tion of the coupled NLS equatiori4), by the solution of the ure) follows the pulse in the other polarization. This shadow
present approximate equations, and by the chirped varigulse is dragged along and continues to interact for a very
tional equation$7,11]. It can be seen that both approximate large time, so that a steady state is only slowly approached.
methods give excellent agreement with the full numericalNeither the chirped variational methd@] nor the present
solution until aboutny=1. After this point, they start to approximate method take full account of this shadow pulse,
diverge somewhat from the numerical results, but are still irso it is not surprising that both approximate solutions break
good agreement with the numerical solution. The velocitydown when this pulse splitting occurs. What is surprising,
changeséV as given by the chirp equations is in slightly however, is that quite accurate values &f are predicted
better agreement with the numerical results than that giveeven when the pulse splitting begins to occur. Theoretically,
by the present equations as the cutoff is approached. Warnigis possible to extend the approximate method to take ac-
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1.3

20 Z 60 80 100

FIG. 2. The amplitude of the pulaeas a function ot for the
initial conditions »,=1.15,w;=1/7%,, V,;=1, andy,;=0 with A
=2/3. Full numerical solution, — ; solution of present approximate
equations, — — —; solution of chirped variational equatiens-.

count of the split pulse by adding a second pulse to the trial

function (3). Doing this, however, vastly increases the com-

plexity of the resulting equations due to the cross-terms re-N; 1 x,

sulting from the nonlinear termgu|?+ Av|?)u and (v|?
+AJu|?)v in the coupled NLS equations.

The present approximate method accounts for this seconc

pulse to a certain extent, as can be seen from the followin

argument. From the symmetric location of the shadow pulse ;g1
in Fig. 3, it can be seen that the shadow pulse is locked ontc

the main pulse in the polarization. Hence it will have the
same width as this pulse. The mass in the mainpulse at
a given time isM ;= 277w, + /,g3. From the solution of the
approximate equations, it is found that at=80, w;

=0.787 02, and/ ; = 2.5082. Let us assume that all the mass
shed by the main pulse has gone into forming the shadow

pulse. Then assuming that the shadow pulse has the solito
like profile 7 sech&+y,)/w; and noting that the initial mass
is M;=2.65, we find thatp=0.3001. This amplitude is in

1.2

[ul
08

0.6

0.4

0.2

L

FIG. 3. Numerical solution az=80 for the initial valuesz,
= 1325, W1:1/7]1, V1=1.0, andy1=0.0 Wlth A:2/3
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reasonable agreement with the amplitude seen in Fig. 3. It is
then clear that the shadow pulse is being formed from the

mass shed by the main pulse. The present approximate
method can account for the amount of mass shed, but it
cannot account for the accumulation of this mass in the vi-

cinity of the main part of the pulse.

We now consider a case in which the pulses evolve to the
coupled solitary wave steady stdté]. We take the initial
values 7;=1.0, w;=1/J/1+A, V;=0.1, y;=0.0 with A
=0.1 (andg;=0.0 so that no radiation is present initiglly
The evolution of the pulse amplitude, is shown in Fig.
4(a). It can be seen that the comparison between the approxi-
mate and numerical solutions is very good. There is a beating
effect apparent in the numerical solution which is not fully
mirrored in the approximate solution, but otherwise the com-
parison is excellent. The importance of the shed dispersive
radiation can be seen from the next figure, Figo)4This
figure shows the pulse amplitudg as a function ot for the

]
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1.01 ¢+

1.005 +

0.995 |\

0.99 |

goosst \i fi

0.975

0.97 |

0.965
0

1.06

n
1.04

1.02

0.94

0.92

0 20 0, 60 80 100

FIG. 4. Comparison between the full numerical solution of the
coupled NLS equation$l) and the solutions of the approximate
equations, showing evolution of; as a function ofz. The initial
values are ,=1.0, w,=1/(%,y1+A), V,=0.1, and y,;=0.0
with A=0.1. (a) Full numerical solution, —; solution of present
approximate equations, — — —(b) Full numerical solution, —;
solution of present approximate equations, — — —; solution of
chirped variational equations - -; solution of present approximate
equations without radiative damping; - .
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FIG. 5. Comparison between the full numerical solution of the z

coupled NLS equationgl) and the solutions of the approximate £ 6. pulse kinetic energy as a functionNumerical solu-

equations, showing evolution o2 as a function oz The initial 5, - present approximate equations with dampirg: —; so-
values are as for Fig. 4. Full numerical solution, —; solution of | tion of chirped variational equations, - - -.

present approximate equations, — — — ; solution of chirped varia-
tional equations- - - .

Ekm=Af |u|4dt—Af lu[2v|2dt

same parameters as Figafias given by the full numerical o 2
solution, the chirped variational approximatipn|, and the (f wlm(u* Ut)dt>
present approximate equations with and without radiation
damping. It can be seen that both the chirped equations and J'w |u|dt
the present approximate equations without taking radiation —o
into account give large overestimates of the pulse amplitude
oscillations. It is therefore seen that to obtain a good approxiFigure 6 shows this effective kinetic energy as a function of
mation of the pulse evolution, the shed dispersive radiatiolistancez for the full CNLS numerics, the chirped varia-
must be included. tional method, and the present method including dispersive
In Fig. 5 the relative velocity 2, of the pulses as a func- radiation. While neither ODE approximation is in perfect
tion of z is shown for the same initial conditions as in Fig. duantitative agreement with the full numerics, the approxi-
4(a). Shown in the figure are results from the full numericalMation including dispersive damping does a better job of
solution, the present approximate method, and the chirpeare‘j_":t'ng the quahtatlye behawor of the pu_lse energy. In
variational method7]. It can be seen that there is again goodpartlcular, since the chirped variational equations include no

agreement between the numerical solution and the preseﬁ{feCtS due to dispersive radiatigf], they produce a pulse

approximate solution, with the damping of the approximateenergy that is almost periodic with distance.

solution being slightly less than the actual damping. The
greater velocity damping present in the numerical solution is V. CONCLUSIONS

in accord with the results shown in Fig. 1 and results from |, summary, we have used a hybrid variational method
the momentum shed by the pulses being greater than thg{at includes the effects of dispersive radiation to describe
predicted by the approximate equations. The velocity as prehe transient evolution of coupled pulses in a birefringent
dicted by the chirp equations is in good agreement with theyonlinear optical fiber. It is shown that the inclusion of mass
numerical solution in the initial stages of the evolution. and momentum fluxes due to the dispersive radiation is a
However, since there is no damping present in the chirpequirement for obtaining good agreement between approxi-
equations, the velocity oscillates in a quasiperiodic fashion.mate and full numerical solutions of the governing equations.
The importance of the shed dispersive radiation can also

be seen in Fig. 6. Here, the approximate ODE equations have ACKNOWLEDGMENTS
been used to define an effective “kinetic” energy for the
motion of the centers of the two polarizationg. (The other This work was supported in part by grants from NATO
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bound up on oscillations of the pulse amplitude and wjdth. (Air Force Materials Command, USAF under Grant No.
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