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Radiative losses due to pulse interactions in birefringent nonlinear optical fibers
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The transient evolution of two-polarization pulses in a birefringent nonlinear optical fiber, governed by
coupled nonlinear Schro¨dinger~NLS! equations, is considered. The evolution is studied using a trial function
consisting of coupled solitonlike pulses with varying parameters augmented by a radiative shelf in the La-
grangian formulation of the coupled equations, which yields ordinary differential equations for the pulse
parameters. It is shown that including mass and momentum fluxes due to the radiative shelf is a requirement
to obtain good agreement with full numerical solutions of the governing equations.
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I. INTRODUCTION

The use of solitons as the information bit in optical co
munication systems was proposed by Hasegawa and Ta
@1#. Solitons have a number of significant advantages as
formation carriers, the most important being the balancing
the inherent Kerr nonlinearity of the optical glass with line
chromatic dispersion, so that propagation occurs with
change of form. Real optical fibers are birefringent, so t
different polarizations travel with different velocities, whic
in the linear limit leads to signal splitting. Opposing th
however, the nonlinearity of the glass leads to cross-ph
modulation which tends to hold the polarizations togeth
The propagation of a pulse through a birefringent fiber th
depends on the relative importance of these two effects.

The propagation of optical solitons in a nonlinear, pol
ization maintaining birefringent optical fiber is described
the coupled nonlinear Schro¨dinger ~CNLS! equations@2#

i
]u

]z
1

1

2

]2u

]t2
1~ uuu21Auvu2!u50, ~1a!

i
]v
]z

1
1

2

]2v

]t2
1~ uvu21Auuu2!v50. ~1b!

Hereu andv are the complex amplitudes of the two orthog
nally polarized modes propagating in the fiber andA is the
cross-phase modulation~CPM! coefficient, where 0<A<1.
The variablez is the distance down the fiber normalized
the dispersion length andt is the reduced time. The couple
NLS equations~1! have an exact inverse scattering soluti
for A50, for which the system reduces to a pair of u
coupled NLS equations, and forA51, for which the system
is the Manakov equation. Therefore forA50 andA51 the
solution of Eq. ~1! is integrable and, in principle, fully
known. For real fibers, however,A52/3 and approximate o
numerical methods must be used to describe pulse evolu
1063-651X/2001/63~3!/036614~9!/$15.00 63 0366
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The behavior of vector solitary wave solutions of th
above equations has been investigated by a number o
searchers, showing that only single-peaked, symmetric v
tor solitary waves are stable~see, e.g.,@3,5,4,6#!. The evolu-
tion of such solitonlike pulses has been explored us
numerical and variational techniques@7–9#. In particular, the
chirped Lagrangian method of Anderson@10# works remark-
ably well to describe the dynamics of these coupled puls
at least for relatively short distances@11#. One of the main
disadvantages of the variational method, however, is that
persive radiation is not easily included. As the pulses pro
gate and collide, oscillations in their relative positions
amplitudes cause them to continually radiate. This radiat
is particularly important when propagation over longer d
tances must be considered.

Kath and Smyth@12# developed an alternative hybri
variational method to calculate the effect of dispersive rad
tion on the evolution of pulse initial conditions for the NL
equation. The method provided a much improved appro
mation of the pulse evolution. In an independent study, Ya
@9# linearized about a coupled vector soliton to calculate
radiation shed as a near-vector soliton initial conditi
evolves and showed the steady state of a vector solito
reached by the loss of mass and energy via the shed dis
sive radiation. Smyth and Worthy@13# extended the method
of @12# to model a nonlinear twin-core fiber, which is gov
erned by a system of two coupled NLS equations similar
the CNLS equations~1!. It was found that including the dis
persive radiation shed as the pulses evolve gives appr
mate solutions in much better agreement with full numeri
solutions than those of previous work based on the ch
method of Anderson@10#, which did not include this shed
radiation.

Here we report on the extension and application of
hybrid method of@12# to the CNLS equations. As demon
strated by Yang@9#, it will be shown that inclusion of the
mass and momentum fluxes associated with the disper
radiation shed as the pulses evolve is necessary in orde
achieve good agreement with full numerical solutions of
coupled NLS equations.
©2001 The American Physical Society14-1
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II. APPROXIMATE EQUATIONS

The Lagrangian for the CNLS system~1! is

L5
1

2
i ~u* uz2uuz* !2

1

2
uutu21

1

2
uuu41Auuu2uvu2

1
1

2
i ~v* vz2vvz* !2

1

2
uv tu21

1

2
uvu4. ~2!

Here the asterisk denotes the complex conjugate
u, v, u* , andv* are taken to be separate variables wh
variations are taken. The key to the hybrid variation
method is the choice of trial functions to substitute into t
Lagrangian~2!. In particular, it is critical that the effect o
the dispersive radiation shed as the pulses evolve is inclu
in the trial functions. Based upon work done for the NL
equation@12#, the appropriate trial functions are

u5h1 sech
t2y1

w1
eis11 iV1(t2y1)1 ig1eis11 iV1(t2y1),

~3a!

v5h2 sech
t2y2

w2
eis21 iV2(t2y2)1 ig2eis21 iV2(t2y2).

~3b!

Here the parametersh i , wi , Vi , yi , s i , andgi , i 51,2,
are functions ofz. The first term in each expression is
varying solitonlike pulse, and the second term includes
effect of the dispersive radiation which lies in the vicinity
the pulse@12#. This radiation term is assumed to take t
form of a flat shelf~sinceg1 andg2 have not dependence!
because both numerical solutions of the NLS equation
perturbed inverse scattering show that the radiation in
vicinity of the evolving pulse has littlet variation. The physi-
cal reason for this is that the high-frequency radiation has
largest group velocity and so rapidly propagates away fr
the pulse, leaving low-frequency radiation only in its neig
borhood. The trial functions~3! include the radiation in the
vicinity of the pulse only, and the form of the dispersiv
radiation propagating away from the evolving pulses will
considered later. It is this radiation propagating away fr
the evolving pulses which causes them to evolve tow
steady states. The shelf under the pulsesu andv cannot be
infinite, of course, since this would imply that they conta
infinite mass. It is therefore assumed that the shelf foru(v)
is of length l 1 (l 2) centered about the pulse positiont
5y1 (y2).

Evolution equations for the pulse parameters in Eq.~3!
are then obtained by substituting~3! into the Lagrangian~2!
integrated overt from t52` to t5`,

L5E
2`

`

L dt ~4!

~except for the terms describing the shelf, which only p
duce finite intervals!. The result is
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L52~s182V1y18!~2h1
2w11l 1g1

2!2ph1w1g181pw1g1h18

1ph1g1w182
1

3

h1
2

w1
2

1

2
l 1V1

2g1
22V1

2h1
2w11

2

3
h1

4w1

1Ah1
2h2

2I 12~s282V2y28!~2h2
2w21l 2g2

2!2ph2w2g28

1pw2g2h281ph2g2w282
1

3

h2
2

w2
2

1

2
l 2V2

2g2
22V2

2h2
2w2

1
2

3
h2

4w2 , ~5!

where the integralI 1 is given by

I 15E
2`

`

sech2 u1 sech2 u2 dt, u15
t2y1

w1
, u25

t2y2

w2
.

~6!

In deriving this approximate Lagrangian, it has been
sumed that the amplitude of the dispersive radiation is m
less than the pulse amplitudes, so thatug1u!h1 and ug2u
!h2. Of the quadratic terms ing1 and g2 in the averaged
Lagrangian, only those proportional tol 1 andl 2 have been
retained. These terms are needed for mass conservation
correct, while the others have little effect on the variation
equations.

Taking variations of the averaged Lagrangian~5! with
respect to each of the pulse parameters then gives the v
tional equations

dg1 :
d

dz
~h1w1!5

l 1g1

p S s182
1

2
V1y18D , ~7a!

dh1 : 24~s182V1y18!h1w122pw1g182
2

3

h1

w1

22V1
2h1w11

8

3
h1

3w112Ah1h2
2I 150,

~7b!

dw1 : 22~s182V1y18!h1
222ph1g181

1

3

h1
2

w1
2

2V1
2h1

21
2

3
h1

412A
h1

2h2
2

w1
2

I 250, ~7c!

dV1 :
dy1

dz
5V1 , ~7d!

ds1 :
d

dz
~2h1

2w11l 1g1
2!50, ~7e!

dy1 :
d

dz
@~2h1

2w11l 1g1
2!V1#52

2Ah1
2h2

2

w2
I 3 , ~7f!

plus similar equations due to variations
g2 , h2 , w2 , V2 , y2, ands2. Also,
4-2
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I 25E
2`

`

~ t2y1!sech2 u1 sech2 u2 tanhu1 dt ~8!

and

I 35E
2`

`

sech2 u1 sech2 u2 tanhu2 dt. ~9!

After some manipulation, the first four of the variation
equations~7! become

d

dz
~h1w1!5

l 1g1

p Fh1
22

1

2
w1

221A
h2

2

w1
2 ~w1I 12I 2!G ,

~10a!

dg1

dz
52

2

3p
h1~h1

22w1
22!2A

h1h2
2

pw1
2 ~w1I 122I 2!,

~10b!

ds1

dz
2

1

2
V1

dy1

dz
5h1

22
1

2
w1

221A
h2

2

w1
2 ~w1I 12I 2!,

~10c!

dy1

dz
5V1 . ~10d!

The last two variational equations,~7e! and ~7f!, are state-
ments of the conservation of mass and momentum fou.
From the NLS equation~1! one can show directly that th
equations for conservation ofu mass and momentum are

i
]

]z
~ uuu2!1

1

2

]

]t
~u* ut2uut* !50, ~11a!

i
]

]z
~u* ut2uut* !1

1

2

]

]t
~u* utt1uutt* 22uutu212uuu4!

522Auuu2~v* v t1vv t* !. ~11b!

Integrating Eq.~11a! from t52` to t5` gives Eq.~7e! and
integrating Eq.~11b! gives Eq.~7f!.

In addition, the coupled NLS system~1! has the total-
energy conservation equation

i
]

]z
~ uutu22uuu41uv tu22uvu422Auuu2uvu2!

1
1

2

]

]z
@ut* utt2ututt* 22uuu2~u* ut2uut* !1v t* v tt

2v tv tt* 22uvu2~v* v t2vv t* !22Auuu2~v* v t2vv t* !

22Auvu2~u* ut2uut* !#50. ~12!

Integrating this fromt52` to t5` gives
03661
dE

dz
5

d

dzF2

3

h1
2

w1
1~2h1

2w11l 1g1
2!V1

22
4

3
h1

4w11
2

3

h2
2

w2

1~2h2
2w21l 2g2

2!V2
22

4

3
h2

4w222Ah1
2h2

2I 1G
50. ~13!

This energy conservation result can be obtained directly
taking a combination of the variational equations~7!. It
should also be noted that the mass conservation equation~7e!
can be obtained from a suitable combination of the ene
conservation and other variational equations and is not in
pendent.

The final system governing the evolution of the pulse p
rameters can therefore be taken to be the variational e
tions ~10!, the momentum conservation equation~11b!, and
the energy conservation equation~13!, plus the similar varia-
tional and integrated momentum and energy conserva
equations for the parameters of thev polarization. This
makes a total of 12 equations for the 12 parameters.

For simplicity we will now restrict the discussion to th
antisymmetric case for whichh15h2 , w15w2 , g1
5g2 , s15s2 , V152V2, and y152y2. With these as-
sumptions, the integralsI j can be evaluated exactly and ca
easily be found to be

I 15
4w1

sinh2 z
@z cothz21#, ~14a!

I 25
w1

2

sinh2 z
@z cothz21#2

zw1
2

sinh2 z

3@3 cothz1z23z coth2z#, ~14b!

I 35
2w1

sinh2 z
@3z coth2 z23 cothz2z#, ~14c!

where

z5
2y1

w1
. ~15!

With this antisymmetry, the system of equations govern
the evolution of the pulse then reduces to the six equati
~10!, ~11b!, and~13! for h1 , w1 , s1 , V1 , y1, andg1.

Let us denote the fixed points of this system byh1

5ĥ, w15ŵ, V15V̂, andy15 ŷ. There are then two type
of fixed points: that corresponding to a bound soliton,
which ĥŵ51/A11A with ŷ5V̂50, and that corresponding
to separated solitons inu and v, for which ĥŵ51 with y1
→` as t→`. This second type of fixed point is just a NL
soliton in each polarization.

These two fixed points indicate the two main types
behavior seen in this system. Consider the case where o
lapped pulses start at the samet position in both theu andv
polarizations. If the initial velocity difference is sufficientl
4-3
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large, the pulses separate and become unbound asz→`. If,
however, the initial velocity is small enough, then the puls
remain bound and repeatedly oscillate about each ot
shedding mass, momentum, and energy asz→`.

From the energy conservation equation~13!, the fixed
point for a bound soliton is given by

ĥ352
3

4

E0

A11A
, ~16!

whereE0 is the initial value of the total energy. Similarly
the fixed point for separated, single polarization solitons
given by the solution of

ĥ323V̂2ĥ1
3

4
E050. ~17!

Unfortunately,V̂ as z→` cannot be determined from th
initial conditions via the conservation equations and must
determined from the full time-dependent solution of the a
proximate equations. IfE0,0, then the coupled steady sta
is stable and the pulses evolve toward the amplitude given
Eq. ~16!. If E0.0, then the separated solitons form t
stable steady state and the pulses evolve toward the am
tude given by Eq.~17!.

The length of the shelf under the solitons (l 15l 2 for the
antisymmetric case considered here! is determined by the
requirement that the frequency of oscillation inh1 of the
approximate equations approaches the soliton oscillation
quency as the steady state is approached@12#. From this
requirement we obtain, on linearizing the approximate eq
tions,

l 15
3p2

8ĥA11A
,

l 15
3p2

8ĥ
~18!

for the cases of a coupled soliton and separated solit
respectively. The approximate equations~10!, ~11b!, and
~13! are not as yet complete, however, as the effect of
dispersive radiation propagating away from the evolv
pulses has not been determined.

III. RADIATION LOSS

The effect of the radiation shed by the evolving puls
will now be determined in a similar manner to that used
the NLS equation@12#. It has been shown@12# that account-
ing for the mass and momentum loss due to radiation
sufficient to obtain a good approximation to the pulse beh
ior, and that energy loss can be neglected.

Since the shed radiation has small amplitude, it is g
erned by the linearized form of the coupled NLS equatio
~1!,
03661
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i
]u

]z
1

1

2

]2u

]t2
50, ~19a!

i
]v
]z

1
1

2

]2v

]t2
50. ~19b!

These equations are basically the same as those gove
the shed radiation for the NLS equation@12#, but care must
be taken because here the radiation is shed by acceler
pulses. This, of course, was not a relevant issue for the N
equation, which has soliton solutions moving at constant
locity. To determine the effect of the acceleration, we sh
~19a! to a frame of reference moving with the pulse using t
transformations

j5t2E
0

z

V~t!dt, u5U~j,z!eiVj1(1/2)i *0
zV2(t)dt,

~20!

so that

i
]U

]z
1

1

2

]2U

]j2
5jVzU. ~21!

In general, this linear partial-differential equation for the d
persive radiation cannot be solved exactly. However, if it
assumed thatuVzu is small, then to first order~21! is the same
equation for the dispersive radiation as for the NLS equat
@12#.

We first consider the radiation shed to the right of t
pulse. Keeping only the quadratic terms in the mass con
vation equation~11a! for the coupled NLS equations~1!
gives the mass conservation equation for the first of the
earized NLS equations~19a!. Using the transformations~20!,
it can then be shown that the mass of the radiation she
the right of the pulse is given by

d

dzEy1l 1/2

`

uuu2dt5Im U* Ujuj5l 1/2 . ~22!

Similarly, the mass radiated to the left of the pulse in theu
polarization is found to be

d

dzE2`

y2l 1/2

uuu2dt52Im U* Ujuj52l 1/2 . ~23!

Adding together these two expressions to obtain the t
mass loss by the radiating pulse and noting that it has b
assumed that the shelf is flat in the neighborhood of
pulse, so thatuU(l 1/2,z)u5uU(2l 1/2,z)u, we have

d

dzE2`

`

uuu2dt5Im U* Ujuj5l 1/22Im U* Ujuj52l 1/2 .

~24!

With uVzu small, the Laplace transform solution of Eq.~21!
for Vz50 @12# gives
4-4
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Uj~ l 1/2,z!52A2e2 ip/4
d

dzE0

z r ~t!

Ap~z2t!
dt, ~25!

so that the mass shed from the pulse to the dispersive ra
tion is given by

d

dzE2`

`

uuu2dt52r
d

dzE0

z r ~t!

Ap~z2t!
dt. ~26!

Here r is the height of the shelf,r 5uU(l 1/2,z)u5uu(y
1l 1/2,z)u.

In a similar manner, it can be shown that the total m
mentum in the dispersive radiation shed by the pulse in thu
polarization is

i
d

dzE2`

`

~u* ut2uut* !dt5@Re~U* Ujj!2uUju2

22V Im U* Uj#uj52l 1/2
j5l 1/2 .

~27!

With uVzu small, it can then be found on using Eq.~25! that
the momentum lost to the dispersive radiation is@12#

i
d

dzE2`

`

~u* ut2uut* !dt524Vr
d

dzE0

z r ~t!

Ap~z2t!
dt.

~28!

Comparing the mass loss~26! with this momentum loss, it
can be seen that the momentum loss is the result of the m
shed at velocityV into dispersive radiation. This is just a
expression of the Galilean invariance of the mass and
mentum conservation laws of the NLS equation.

As for the NLS equation@12#, mass conservation can the
be used to show that the height of the shelf is given by

r 25
3ĥA11A

8 F2h1
2w122

ĥ

A11A
1l 1g1

2G ~29!

for the case when coupled solitons are the steady state

r 25
3ĥ

8
@2h1

2w122ĥ1l 1g1
2# ~30!

for the case when separated solitons are the steady state
mass loss~26! is now added to the equation forg1 in Eq.
~10! @12#, so that this equation becomes

dg1

dz
52

2

3p
h1~h1

22w1
22!2A

h1h2
2

pw1
2 ~w1I 122I 2!22ag1 ,

~31!

where

a5
3ĥA11A

8r

d

dzE0

z r ~t!

Ap~z2t!
dt, ~32a!
03661
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a5
3ĥ

8r

d

dzE0

z r ~t!

Ap~z2t!
dt ~32b!

for the steady state of a coupled soliton or separated solit
respectively. The momentum loss~28! is added to the mo-
mentum equation~11b!, so that it becomes

d

dz
@~2h1

2w11l 1g1
2!V1#

52
2Ah1

2h2
2

w2
I 322Vr

d

dzE0

z r ~t!

Ap~z2t!
dt.

~33!

The full system of approximate equations governing the e
lution of the pulses including mass and momentum loss
dispersive radiation is then Eqs.~10! with the equation forg1
replaced by Eq.~31!, Eq. ~33!, and Eq.~13!.

In previous work@12#, the integral in the mass loss term
~26! was approximated using

d

dzE0

z r ~t!

Ap~z2t!
dt'

r 2

r ~0!Apz
, ~34!

wherer (0) is the value ofr at z50. This approximation is
appropriate for an initial value problem in which the pul
sheds a large amount of mass initially and then decays o
the steady state. In the present work, however, the pulses
oscillate about each other, with mass shed each time
pass through each other. To obtain accurate values of
mass integral in Eq.~26! in such oscillatory cases, the inte
gral was evaluated numerically using the method of Mik
and Ting@14#. As the integral is singular atz5t, near this
singular point the nonsingular partr of the integrand was
approximated by a trapezoidal approximation and the sin
lar part 1/Ap(z2t) was evaluated exactly. Away from th
singular point, the integral was evaluated using the trape
dal rule.

The other complication occurs for the separated soli
fixed point because the steady velocityV̂ is not determined
by the conservation equations. This means that the fi
point ĥ cannot be determined from Eq.~17!, so that the
radiation damping given by Eq.~32b! cannot be evaluated
To overcome this, the steady velocityV̂ was found using a
shooting method. For the initial iteration, the instantaneo
value ofV1 at each space step was used to estimateV̂ and the
fixed point ĥ was then estimated at each space step by

ĥ5F3V1
2h12

3

4
E0G1/3

, ~35!

which is a single Picard iteration on Eq.~17!. When the
solution had settled to a steady state, the steady value oV1

was used as a new approximation forV̂ and a new approxi-
mation toĥ was then found by solving Eq.~17!. This process
was repeated until the iterates forV̂ converged. This shoot
4-5
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ing method to determineV̂ worked quite well unless the
initial conditions were such that little radiation was produc
~for instance, whenh0 was small!. In such cases, the initia
iterates could haver (0),0 ~and small!, which is unphysical
and the iteration would not converge. In this case, the s
plest fix was to ignore the mass loss, since the shed radia
was very small, in which case the iterations converged r
idly.

IV. RESULTS

In this section solutions of the approximate equations
rived in Secs. II and III will be compared with full numerica
solutions of the coupled NLS equations~1!. The numerical
method used to solve the coupled NLS equations was a p
dospectral method based on that of Fornberg and Whith
@15# for the Korteweg–de Vries equation. Thet derivatives
in the coupled NLS equations~1! were evaluated using fas
Fourier transforms~FFT’s! and then the equations wer
propagated forward in spacez using a fourth-order Runge
Kutta scheme in Fourier space. The approximate evolu
equations were numerically integrated using a fourth-or
Runge-Kutta scheme.

As a first test we compared the numerical solution of
full and approximate equations for the case of separa
pulses. For this test, we used the initial conditionsh1
5h0 , w151/h0 , V151.0, y150.0 ~with g150.0 so that
no radiation is present initially!, with A52/3, which corre-
sponds to antisymmetric polarizations started with a rela
velocity difference of 2. For this initial condition andh0
sufficiently small, the solution evolves to a pair of separa
solitons with h151/w1 as z→`. Due to the cross-phas
modulation, the velocityV1 changes~slows! by an amount
dV. Since the steady velocityV̂ cannot be determined from
the conservation equations, the shooting method outline
Sec. III was used to determine the steady state. Also, s
the pulses’ positions do not oscillate about each other in
case, the approximation~34! was used to evaluate the inte
gral in Eq.~26!. Using this approximation together with th
shooting method to determine the fixed point, however, gi
r (0)50 for the initial iterate of the shooting method. T
overcome this initial singularity, the mass loss given by
integral ~34! in Eqs. ~31! and ~33! was ignored for the first
iteration of the shooting method. However, for all subs
quent iterations,r (0)Þ0 and so the mass loss terms we
included for all subsequent iterations.

Figure 1 shows a comparison betweendV as a function of
the initial amplitudeh0 as given by the full numerical solu
tion of the coupled NLS equations~1!, by the solution of the
present approximate equations, and by the chirped va
tional equations@7,11#. It can be seen that both approxima
methods give excellent agreement with the full numeri
solution until abouth051. After this point, they start to
diverge somewhat from the numerical results, but are stil
good agreement with the numerical solution. The veloc
changedV as given by the chirp equations is in slight
better agreement with the numerical results than that gi
by the present equations as the cutoff is approached. W
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et al. @11# used various approximate methods to determ
dV and compared these approximate values with full num
cal solutions of the coupled NLS equations~1!. They found
that the best comparison was obtained using the chir
variational method@7#. We note that this chirp method in
cludes an approximation to the radiation moving with t
evolving pulses, but does not include the radiation shed
the pulses.

While the chirped variational method@7# gives good
agreement for the velocities of the pulses, it does not g
good agreement for the other pulse parameters. Figur
shows the space evolution of the amplitude of the pulseu for
the initial conditionsh151.15, w151/h1 , V151, andy1
50 with A52/3. Although the values ofdV obtained by the
two approximate methods for this initial condition are ve
close, it can be seen that the present approximate equa
give markedly improved accuracy for the magnitude of t
pulse amplitude oscillation. The chirped variational equ
tions predict an amplitude oscillation with constant amp
tude. This, of course, is due to the chirped method not tak
any account of the radiation shed by the evolving pulses

The reason why the approximate equations break dow
the cutoff in V1 is approached is apparent if the numeric
solution is examined for values ofh0 near the cutoff. From
Fig. 3 it can be seen that for sufficiently largeh0 the input
pulse splits and a shadow pulse~the smaller one in the fig-
ure! follows the pulse in the other polarization. This shado
pulse is dragged along and continues to interact for a v
large time, so that a steady state is only slowly approach
Neither the chirped variational method@7# nor the present
approximate method take full account of this shadow pu
so it is not surprising that both approximate solutions bre
down when this pulse splitting occurs. What is surprisin
however, is that quite accurate values ofdV are predicted
even when the pulse splitting begins to occur. Theoretica
it is possible to extend the approximate method to take

FIG. 1. Comparison between the velocitydV as given by the
full numerical solution~—!, the present approximation~ – – –!,
and the chirped variational approximation~ - - -!. The initial values
areh15h0 , w151/h0 , V151.0, andy150 with A52/3.
4-6
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count of the split pulse by adding a second pulse to the
function ~3!. Doing this, however, vastly increases the co
plexity of the resulting equations due to the cross-terms
sulting from the nonlinear terms (uuu21Auvu2)u and (uvu2

1Auuu2)v in the coupled NLS equations.
The present approximate method accounts for this sec

pulse to a certain extent, as can be seen from the follow
argument. From the symmetric location of the shadow pu
in Fig. 3, it can be seen that the shadow pulse is locked o
the main pulse in thev polarization. Hence it will have the
same width as thisv pulse. The mass in the mainu pulse at
a given time isM152h1

2w11l 1g1
2. From the solution of the

approximate equations, it is found that atz580, w1
50.787 02, andM152.5082. Let us assume that all the ma
shed by the main pulse has gone into forming the shad
pulse. Then assuming that the shadow pulse has the sol
like profile h̃ sech(x1y1)/w1 and noting that the initial mas
is M152.65, we find thath̃50.3001. This amplitude is in

FIG. 2. The amplitude of the pulseu as a function ofz for the
initial conditionsh151.15, w151/h1 , V151, andy150 with A
52/3. Full numerical solution, — ; solution of present approxima
equations, – – –; solution of chirped variational equations, - - -.

FIG. 3. Numerical solution atz580 for the initial valuesh1

51.325, w151/h1 , V151.0, andy150.0 with A52/3.
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reasonable agreement with the amplitude seen in Fig. 3.
then clear that the shadow pulse is being formed from
mass shed by the main pulse. The present approxim
method can account for the amount of mass shed, bu
cannot account for the accumulation of this mass in the
cinity of the main part of thev pulse.

We now consider a case in which the pulses evolve to
coupled solitary wave steady state@7#. We take the initial
values h151.0, w151/A11A, V150.1, y150.0 with A
50.1 ~and g150.0 so that no radiation is present initially!.
The evolution of the pulse amplitudeh1 is shown in Fig.
4~a!. It can be seen that the comparison between the appr
mate and numerical solutions is very good. There is a bea
effect apparent in the numerical solution which is not fu
mirrored in the approximate solution, but otherwise the co
parison is excellent. The importance of the shed dispers
radiation can be seen from the next figure, Fig. 4~b!. This
figure shows the pulse amplitudeh1 as a function ofz for the

FIG. 4. Comparison between the full numerical solution of t
coupled NLS equations~1! and the solutions of the approximat
equations, showing evolution ofh1 as a function ofz. The initial
values are h151.0, w151/(h1A11A), V150.1, and y150.0
with A50.1. ~a! Full numerical solution, —; solution of presen
approximate equations, – – – .~b! Full numerical solution, —;
solution of present approximate equations, – – –; solution
chirped variational equations, - - -; solution of present approximat
equations without radiative damping,•••.
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NOEL F. SMYTH AND WILLIAM L. KATH PHYSICAL REVIEW E 63 036614
same parameters as Fig. 4~a! as given by the full numerica
solution, the chirped variational approximation@7#, and the
present approximate equations with and without radiat
damping. It can be seen that both the chirped equations
the present approximate equations without taking radia
into account give large overestimates of the pulse amplit
oscillations. It is therefore seen that to obtain a good appr
mation of the pulse evolution, the shed dispersive radia
must be included.

In Fig. 5 the relative velocity 2V1 of the pulses as a func
tion of z is shown for the same initial conditions as in Fi
4~a!. Shown in the figure are results from the full numeric
solution, the present approximate method, and the chir
variational method@7#. It can be seen that there is again go
agreement between the numerical solution and the pre
approximate solution, with the damping of the approxim
solution being slightly less than the actual damping. T
greater velocity damping present in the numerical solutio
in accord with the results shown in Fig. 1 and results fro
the momentum shed by the pulses being greater than
predicted by the approximate equations. The velocity as
dicted by the chirp equations is in good agreement with
numerical solution in the initial stages of the evolutio
However, since there is no damping present in the ch
equations, the velocity oscillates in a quasiperiodic fashi

The importance of the shed dispersive radiation can a
be seen in Fig. 6. Here, the approximate ODE equations h
been used to define an effective ‘‘kinetic’’ energy for th
motion of the centers of the two polarizations@7#. ~The other
main degree of freedom is then thought of as an ‘‘interna
bound up on oscillations of the pulse amplitude and widt!
Using guidance from the ODE equations, one can define
effective pulse kinetic energy

FIG. 5. Comparison between the full numerical solution of t
coupled NLS equations~1! and the solutions of the approxima
equations, showing evolution of 2V1 as a function ofz. The initial
values are as for Fig. 4. Full numerical solution, —; solution
present approximate equations, – – – ; solution of chirped va
tional equations, - - - .
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Figure 6 shows this effective kinetic energy as a function
distancez for the full CNLS numerics, the chirped varia
tional method, and the present method including dispers
radiation. While neither ODE approximation is in perfe
quantitative agreement with the full numerics, the appro
mation including dispersive damping does a better job
predicting the qualitative behavior of the pulse energy.
particular, since the chirped variational equations include
effects due to dispersive radiation@7#, they produce a pulse
energy that is almost periodic with distance.

V. CONCLUSIONS

In summary, we have used a hybrid variational meth
that includes the effects of dispersive radiation to descr
the transient evolution of coupled pulses in a birefringe
nonlinear optical fiber. It is shown that the inclusion of ma
and momentum fluxes due to the dispersive radiation i
requirement for obtaining good agreement between appr
mate and full numerical solutions of the governing equatio
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FIG. 6. Pulse kinetic energy as a function ofz. Numerical solu-
tion, —; present approximate equations with damping,222; so-
lution of chirped variational equations, - - -.
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